Mechano-sensitization of mammalian neuronal networks through expression of the bacterial mechanosensitive MscL channel

نویسندگان

  • Alessandro Soloperto
  • Anna Boccaccio
  • Andrea Contestabile
  • Monica Moroni
  • Grace I. Hallinan
  • Gemma Palazzolo
  • John Chad
  • Katrin Deinhardt
  • Dario Carugo
  • Francesco Difato
چکیده

Development of remote stimulation techniques for neuronal tissues represents a challenging goal. Among the potential methods, mechanical stimuli are the most promising vector to convey information non-invasively into intact brain tissue. In this context, selective mechano-sensitization of neuronal circuits would pave the way to develop a new cell-type specific stimulation approach. We report here for the first time the development and characterization of mechanosensitized neuronal networks through the heterologous expression of an engineered bacterial large conductance mechanosensitive ion channel (MscL). The neuronal functional expression of the MscL channel was validated through patch-clamp recordings upon application of calibrated suction pressures. Moreover, we verified the effective development of in-vitro neuronal networks expressing the engineered MscL channel in terms of cell survival, number of synaptic puncta, and spontaneous network activity. The pure mechanosensitivity of the engineered MscL channel, with its wide genetic modification library, may represent a versatile tool to further develop a mechano-genetic approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled delivery of bioactive molecules into live cells using the bacterial mechanosensitive channel MscL

Bacterial mechanosensitive channels are some of the largest pores in nature. In particular, MscL, with a pore diameter >25 Å, allows passage of large organic ions and small proteins. Functional MscL reconstitution into lipids has been proposed for applications in vesicular-based drug release. Here we show that these channels can be functionally expressed in mammalian cells to afford rapid contr...

متن کامل

A high-throughput screen for MscL channel activity and mutational phenotyping.

A novel fluorescence-based screen for bacterial mechanosensitive ion-channel activity has been developed. This assay is capable of clearly distinguishing the previously observed gain of function and loss of function phenotypes for the Escherichia coli mechanosensitive channel of large conductance (Ec-MscL). The method modifies Molecular Probes' Live/Dead BacLight bacterial viability assay to mo...

متن کامل

Assessment of potential stimuli for mechano-dependent gating of MscL: effects of pressure, tension, and lipid headgroups.

MscL is a mechanosensitive channel of large conductance that serves as an "emergency relief valve", protecting bacteria from acute hypoosmotic stress. Although it is well-accepted that the MscL protein and an adequate membrane matrix are necessary and sufficient for the function of this channel, the exact role of the membrane has yet to be elucidated. Here, we address the role of the membrane m...

متن کامل

Dihydrostreptomycin Directly Binds to, Modulates, and Passes through the MscL Channel Pore

The primary mechanism of action of the antibiotic dihydrostreptomycin is binding to and modifying the function of the bacterial ribosome, thus leading to decreased and aberrant translation of proteins; however, the routes by which it enters the bacterial cell are largely unknown. The mechanosensitive channel of large conductance, MscL, is found in the vast majority of bacterial species, where i...

متن کامل

Gating-associated conformational changes in the mechanosensitive channel MscL.

Bacterial cells avoid lysis in response to hypoosmotic shock through the opening of the mechanosensitive channel MscL. Upon channel opening, MscL is thought to expand in the plane of the membrane and form a large pore with an estimated diameter of 3-4 nm. Here, we set out to analyze the closed and open structure of cell-free MscL. To this end, we characterized the function and structure of wild...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018